The unitary representations of the Diff R^{N} group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1979 J. Phys. A: Math. Gen. 121625
(http://iopscience.iop.org/0305-4470/12/10/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 19:03

Please note that terms and conditions apply.

The unitary representations of the Diff $\boldsymbol{R}^{\boldsymbol{N}}$ group

A B Borisov
The Institute of Physics of Metals, Ural Scientific Center, Academy of Sciences of the USSR, Sverdlovsk, USSR

Received 26 September 1978

Abstract

A new series of unitary representations of the general covariant group in N-dimensional real vector space (group Diff R^{N}) is constructed. The matrix elements of the finite transformations in the space of the principal series of unitary representations of the special linear group $\operatorname{SL}(N, R)(N>3)$ and in the space of all series of unitary representations of $\operatorname{SL}(2, R), \operatorname{SL}(3, R)$ are found.

1. Introduction

In recent years there has been much interest in the unitary representations (UR) of the Diff $R^{\boldsymbol{N}}$ group \dagger (see the review by Vershik et al 1975). It is important to construct the UR of Diff R^{N} because of their applicability to physical problems and the theory of UR of infinite Lie groups.

The finite-dimensional representations (FDR) of Diff R^{N} are well known. They are defined on the tensors $\Phi_{\beta_{1} \ldots \beta_{s}}^{\alpha_{1} \ldots \alpha_{s}}(x)(r, s=1,2, \ldots)$ and the pseudo-tensors $\Phi_{\beta_{1} \ldots \beta_{s}}^{n ; \alpha_{1} \ldots \alpha_{s}}(x)$ of weight $n\left(\mathrm{r}, \mathrm{s}=1,2, \ldots\right.$) (n is an integer) which under the Diff $\boldsymbol{R}^{\boldsymbol{N}}$ transformation of coordinates $x_{\mu} \rightarrow x_{\mu}^{\prime}(x)$ transform as

$$
\begin{equation*}
\Phi_{\beta_{1} \ldots \beta_{s}}^{\prime \alpha_{2} \ldots \alpha_{r}}\left(x^{\prime}\right)=\frac{\partial x_{\alpha_{1}}^{\prime}}{\partial x_{\gamma_{1}}^{\prime}} \ldots \frac{\partial x_{\alpha_{2}}^{\prime}}{\partial x_{\gamma_{r}}} \frac{\partial x_{\delta_{1}}}{\partial x_{\beta_{1}}^{\prime}} \ldots \frac{\partial x_{\delta_{s}}}{\partial x_{\beta_{s}}^{\prime}} \Phi_{\delta_{1} \ldots \delta_{s}}^{\gamma_{1} \ldots \gamma_{r}}(x) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{\beta_{1} \ldots \beta_{s}}^{\prime n ; \alpha_{r}}\left(x^{\prime}\right)=\left(\operatorname{det} \frac{\partial x^{\prime}}{\partial x}\right)^{n} \frac{\partial x_{\alpha_{1}}^{\prime}}{\partial x_{\gamma_{1}}} \ldots \frac{\partial x_{\alpha_{r}}^{\prime}}{\partial x_{\gamma_{2}}} \frac{\partial x_{\delta_{1}}}{\partial x_{\beta_{1}}^{\prime}} \ldots \frac{\partial x_{\delta_{s}}}{\partial x_{\beta_{s}}^{\prime}} \Phi_{\delta_{1} \ldots \delta_{s}}^{n ; \gamma_{1} \ldots \gamma_{r}}(x) . \tag{2}
\end{equation*}
$$

At any point $x_{0} \in R^{N}$ the matrices
$\left\{\frac{\partial x_{\alpha_{1}}^{\prime}}{\partial x_{\gamma_{1}}} \ldots \frac{\partial x_{\alpha_{r}}^{\prime}}{\partial x_{\gamma_{2}}} \frac{\partial x_{\delta_{1}}}{\partial x_{\beta_{1}}^{\prime}} \ldots \frac{\partial x_{\delta_{s}}}{\partial x_{\beta_{s}}^{\prime}}\right\}, \quad\left\{\left(\operatorname{det} \frac{\partial x^{\prime}}{\partial x}\right)^{n} \frac{\partial x_{\alpha_{1}}^{\prime}}{\partial x_{\gamma_{1}}} \ldots \frac{\partial x_{\alpha_{r}}^{\prime}}{\partial x_{\gamma_{2}}} \frac{\partial x_{\delta_{1}}}{\partial x_{\beta_{1}}^{\prime}} \ldots \frac{\partial x_{\delta_{s}}}{\partial x_{\beta_{s}}^{\prime}}\right\}$
are matrices of the determined FDR of the linear group $\operatorname{GL}(N, R)$ for the element

$$
g\left(x_{0}\right)=\left\{\frac{\partial x_{\mu}^{\prime}}{\partial x_{\nu}}\left(x=x_{0}\right)\right\} \in \mathrm{GL}(N, R) .
$$

[^0]In a recent paper (Borisov 1978, referred to hereafter as I) new series of UR for the Lie algebra of the Diff R^{N} group in the infinite-dimensional space of the UR of the $\operatorname{SL}(N, R)$ group were obtained. The present paper is a continuation of I. Here we construct a new series of UR of Diff R^{N}. They are defined in the infinite-dimensional space of the UR of the $\operatorname{SL}(N, R)$ group and are realised by infinite-dimensional matrices $T_{x^{\prime}(x)}$. At any point $x_{0} \in R^{N}$ the matrices $T_{x^{\prime}(x)}$ are matrices of the determined UR of $\mathrm{GL}(N, R)$ for the element

$$
g\left(x_{0}\right)=\left\{\frac{\partial x_{\mu}^{\prime}}{\partial x_{\nu}}\left(x=x_{0}\right)\right\}
$$

2. The unitary representations of the Diff $\boldsymbol{R}^{\boldsymbol{N}}$ group

2.1. The Iwasawa decomposition for the matrix $\Lambda\left(x^{\prime}(x), x\right)$

First we assume all the conventions and notations of I. In what follows we refer to equation (...) of I as (I ...). At every point R^{N} having coordinates x_{μ} we associate with the transformation (I1) the element $\Lambda\left(x^{\prime}(x), x\right)$ of the group $\mathrm{GL}(N, R)$ defined by the matrix $\left\{\Lambda_{\mu \nu}\left(x^{\prime}(x), x\right)\right\}=\left\{\partial x_{\mu}^{\prime}(x) / \partial x_{\nu}\right\}$. Let us examine properties of this matrix, restricting ourselves to the transformations (I1) with det $\Lambda\left(x^{\prime}(x), x\right)>0$. The matrix $\Lambda\left(x^{\prime}(x), x\right)$ forms the representation (non-unitary) of Diff R^{N}, since the relation

$$
\begin{equation*}
\Lambda\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) \Lambda\left(x^{\prime}(x), x\right)=\Lambda\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right) \tag{3}
\end{equation*}
$$

is valid for any transformations $x_{\mu} \rightarrow x_{\mu}^{\prime}(x), x_{\mu}^{\prime}(x) \rightarrow x_{\mu}^{R}\left(x^{\prime}(x)\right)$ of Diff $R^{N} . \Lambda\left(x^{\prime}(x), x\right)$ can be written as a product

$$
\begin{equation*}
\Lambda\left(x^{\prime}(x), x\right)=d\left(\Lambda\left(x^{\prime}(x), x\right)\right) \Lambda_{s}\left(x^{\prime}(x), x\right) \tag{4}
\end{equation*}
$$

where the matrix $d\left(\Lambda\left(x^{\prime}(x), x\right)\right)$ is proportional to the unit matrix $I: d\left(\Lambda\left(x^{\prime}(x), x\right)\right)=$ $\operatorname{det} \Lambda\left(x^{\prime}(x), x\right) . I$ and $\Lambda_{s}\left(x^{\prime}(x), x\right) \in \operatorname{SL}(N, R)$. By the Iwasawa decomposition (Helgason 1962) $\Lambda_{s}\left(x^{\prime}(x), x\right)$ can be written as a product

$$
\begin{equation*}
\Lambda_{s}\left(x^{\prime}(x), x\right)=k(x) a(x) t(x), \tag{5}
\end{equation*}
$$

where $k(x) \in \mathrm{SO}(N), a(x) \in A, t(x) \in T$. In the following we will use two important properties of the Iwasawa decomposition: (i) the Iwasawa decomposition is unique; and (ii) the product of some element $k \in \operatorname{SO}(N)$ and the matrix $\Lambda_{s}\left(x^{\prime}(x), x\right)$ can be written as

$$
\begin{equation*}
\Lambda_{s}\left(x^{\prime}(x), x\right) k=k . \Lambda_{s}\left(x^{\prime}(x), x\right) a\left(k, \Lambda_{s}\left(x^{\prime}(x), x\right)\right) t(x), \tag{6}
\end{equation*}
$$

where $k . \Lambda_{s}\left(x^{\prime}(x), x\right) \in \operatorname{SO}(N), \quad a\left(k, \Lambda_{s}\left(x^{\prime}(x), x\right)\right) \in A, \quad t(x) \in T$. The matrices $k . \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)$ and $a\left(k, \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\right)$ satisfy the relations

$$
\begin{equation*}
k \cdot \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right)=k \cdot \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) \cdot \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
& a\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right)\right) \\
& \quad=a\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right), \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\right) a\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right) \tag{8}
\end{align*}
$$

for any transformations $x_{\mu} \rightarrow x_{\mu}^{\prime}(x), x_{\mu}^{\prime}(x) \rightarrow x_{\mu}^{\mathbb{R}}\left(x^{\prime}(x)\right)$ of the Diff R^{N} group. These relations follow from the associativity of a product of matrices, i.e.
$\left(\Lambda_{s}^{-1}\left(x^{\prime}(x), x\right) \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right) k=\Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\left(\Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) k\right)$,
and relation (3). Namely,

$$
\begin{align*}
\left(\Lambda _ { s } ^ { - 1 } \left(x^{\prime}(x),\right.\right. & \left.x) \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right) k \\
& =\Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right) k \\
& =k \cdot \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right) a\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right)\right) t(x) \tag{9a}
\end{align*}
$$

and

$$
\begin{align*}
& \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\left(\Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) k\right) \\
&= \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right) k \cdot \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) a\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right) t_{1}(x) \\
&= k \cdot \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) \cdot \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right) \\
& \times a\left(k \cdot \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right), \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\right) t_{2}(x) \\
& \times a\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right) t_{1}(x) . \tag{9b}
\end{align*}
$$

Since T is an invariant subgroup in TA one has

$$
t_{2}(x) a\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right)=a\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right) t_{2}^{\prime}
$$

Therefore

$$
\begin{align*}
& \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\left(\Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) k\right) \\
&= k \cdot \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) \cdot \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right) a\left(k \cdot \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right),\right. \\
&\left.\times \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\right) a\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right) t_{2}^{\prime}(x) t_{1}(x) . \tag{10}
\end{align*}
$$

Then relations (7) and (8) follow from equations (9a,b) and (10) and the uniqueness of the Iwasawa decomposition. When the matrix $a\left(k, \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\right)$ is written as $\exp \left(h\left(k, \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\right)\right)$, relation (8) reads

$$
\begin{align*}
h\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\right.\right. & \left.\left.\left(x^{\prime}(x)\right), x\right)\right) \\
& =h\left(k \cdot \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right), \Lambda_{s}^{-1}\left(x^{\prime}(x), x\right)\right)+h\left(k, \Lambda_{s}^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right) . \tag{11}
\end{align*}
$$

Using (4), (7) and (11) we obtain the decomposition
$\Lambda\left(x^{\prime}(x), x\right) k=k . \Lambda\left(x^{\prime}(x), x\right) a\left(k, \Lambda\left(x^{\prime}(x), x\right)\right) t(x)$,
$k . \Lambda\left(x^{\prime}(x), x\right) \in \mathrm{SO}(N), \quad a\left(k, \Lambda\left(x^{\prime}(x), x\right)\right) \in A, \quad t_{2}(x) \in T$,
and relations

$$
\begin{equation*}
k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right)=k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{gather*}
h\left(k, \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right)\right)=h\left(k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right), \Lambda^{-1}\left(x^{\prime}(x), x\right)\right) \\
+h\left(k, \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right) \tag{14}
\end{gather*}
$$

where $a\left(k, \Lambda\left(x^{\prime}(x), x\right)\right)=a\left(k, \Lambda_{s}\left(x^{\prime}(x), x\right)\right) d\left(\Lambda\left(x^{\prime}(x), x\right)\right)$. The group A has the generators $A_{1}, A_{2}, \ldots, A_{N}$ if det $a \neq 1(a \in A)$. Therefore

$$
\begin{equation*}
h\left(k, \Lambda^{-1}\left(x^{\prime}(x), x\right)\right)=\sum_{i=1}^{N} t_{i}\left(k, \Lambda^{-1}\left(x^{\prime}(x), x\right)\right) A_{i} \tag{15}
\end{equation*}
$$

where $t_{1}, t_{2}, \ldots, t_{N}$ are the parameters of the group A.

2.2. The unitary representations of the Diff $R^{N}(N>3)$ group

The UR of the principal series of the $\operatorname{SL}(N, R)(N>3)$ group was described in I. It is convenient to extend these representations to UR of the $\mathrm{GL}(N, R)$ group using (I16), (I21) and the representation (I26) for the dilation generator. We obtain
$\Psi_{i j}^{\prime \omega}(g x)=\sum_{\omega^{\prime} i^{\prime} j^{\prime}} \int \mathrm{d} k t_{i j}^{* \omega}(k) t_{i^{\prime} j^{\prime}}^{\omega^{\prime}}\left(k_{g}-1\right)\left(\frac{\mathrm{d} k_{\mathrm{g}}-1}{\mathrm{~d} k}\right)^{1 / 2} \exp \left(\alpha\left(h\left(k, g^{-1}\right)\right)\right)\left(\mathrm{d}_{\omega} \mathrm{d}_{\omega^{\prime}}\right)^{1 / 2} \Psi_{i^{\prime} \prime^{\prime}}^{\omega^{\prime}}(x)$
with
$g^{-1} k=k_{g^{-1}} \exp \left(h\left(k, g^{-1}\right)\right) t, \quad k, k_{g^{-1}} \in \operatorname{SO}(N), \quad \exp \left(h\left(k, g^{-1}\right)\right) \in A, \quad t \in T$, where $\alpha\left(h\left(k, g^{-1}\right)\right)$ is the linear function on the Lie algebra of the group A. The representation (16) is unitary with respect to the scalar product (I22) if $\alpha\left(h\left(k, g^{-1}\right)\right)=$ $-\alpha^{*}\left(h\left(k, g^{-1}\right)\right)$.

Let us construct a family of representations of Diff $R^{N}(N>3)$ parametrised by complex-valued functions on the Lie algebra of the group A. Firstly we introduce the auxiliary field $\Psi(k, x)$,

$$
\begin{equation*}
\Psi(k, x)=\sum_{\omega i j} \mathrm{~d}_{\omega}^{1 / 2} t_{i j}^{\omega}(k) \Psi_{i j}^{\omega}(x) \tag{17}
\end{equation*}
$$

and define the representation $T_{x^{\prime}(x)}$ of the Diff R^{N} group by the prescription

$$
\begin{align*}
\Psi^{\prime}\left(k, x^{\prime}(x)\right) & =T_{x^{\prime}(x)} \Psi(k, x) \\
& =\left(\frac{\mathrm{d} k \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right)}{\mathrm{d} k}\right)^{1 / 2} \exp \left(\alpha\left(h\left(k, \Lambda^{-1}\left(x^{\prime}(x), x\right)\right)\right)\right) \Psi\left(k \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right), x\right) \tag{18}
\end{align*}
$$

That $T_{x^{\prime}(x)}$ is a representation of Diff R^{N} is straightforward:

$$
\begin{align*}
& T_{x^{\prime \prime}\left(x^{\prime}\right)} T_{x^{\prime}(x)} \Psi(k, x)=T_{x^{\prime \prime}\left(x^{\prime}\right)} \Psi^{\prime}\left(k, x^{\prime}(x)\right) \\
&=\left(\frac{\mathrm{d} k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)}{\mathrm{d} k}\right)^{1 / 2} \exp \left(\alpha\left(h\left(k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right)\right)\right) \\
& \times \Psi^{\prime}\left(k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right), x^{\prime}(x)\right) \\
&=\left(\frac{\mathrm{d} k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)}{\mathrm{d} k}\right)^{1 / 2} \exp \left(\alpha\left(h\left(k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)\right)\right)\right) \\
& \times\left(\frac{\mathrm{d} k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right)}{\mathrm{d} k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right)}\right)^{1 / 2} \\
& \times \exp \left(\alpha\left(h\left(k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right), \Lambda^{-1}\left(x^{\prime}(x), x\right)\right)\right)\right) \\
& \times \Psi\left(k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x^{\prime}(x)\right) \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right), x\right) \\
&=\left(\frac{\mathrm{d} k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right)}{\mathrm{d} k}\right)^{1 / 2} \exp \left(\alpha\left(h\left(k, \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right)\right)\right)\right) \\
& \times \Psi\left(k \cdot \Lambda^{-1}\left(x^{\prime \prime}\left(x^{\prime}(x)\right), x\right), x\right) . \tag{19}
\end{align*}
$$

The last step is due to the properties (13), (14) of the Iwasawa decomposition. Thus $T_{x^{\prime \prime}\left(x^{\prime}\right)} T_{x^{\prime}(x)}=T_{x^{\prime \prime}\left(x^{\prime}(x)\right)}$. Let us denote $\alpha\left(A_{i}\right)(i=1,2, \ldots, N)$ by α_{i}. Then we write
$T_{x^{\prime}(x)}$ more explicitly as

$$
\begin{aligned}
& \Psi^{\prime}\left(k, x^{\prime}\right)=T_{x^{\prime}(x)} \Psi(k, x)=\left(\frac{\mathrm{d} k \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right)}{\mathrm{d} k}\right)^{1 / 2} \\
& \times \exp \left(\sum_{i=1}^{N} \alpha_{i} t_{i}\left(k, \Lambda^{-1}\left(x^{\prime}(x), x\right)\right)\right) \Psi\left(k \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right), x\right) .
\end{aligned}
$$

The operator $T_{x^{\prime}(x)}$ is realised on the fields $\Psi_{i j}^{\omega}(x)$ in the following form:

$$
\begin{align*}
\Psi_{i j}^{\prime \omega}\left(x^{\prime}\right)=T_{x^{\prime}(x)} & \Psi_{i j}^{\omega}(x)=\int \mathrm{d} k\left(\mathrm{~d}_{\omega} \mathrm{d}_{\omega^{\prime}}\right)^{1 / 2} t_{i j}^{* \omega}(k)\left(\frac{\mathrm{d} k \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right)}{\mathrm{d} k}\right)^{1 / 2} \\
& \quad \times \exp \left(\sum_{i=1}^{N} \alpha_{i} t_{i}\left(k, \Lambda^{-1}\left(x^{\prime}(x), x\right)\right)\right) t_{i^{\prime} j^{\prime}}^{\omega^{\prime}}\left(k \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right)\right) \Psi_{i^{\prime} j^{\prime}}^{\omega^{\prime}}(x) . \tag{20}
\end{align*}
$$

The representation (20) is, in general, non-unitary with respect to the scalar product (122) if α_{i} are the arbitrary complex numbers. Now suppose that $\alpha_{i}(i=1,2, \ldots, N)$ assume only pure imaginary values. It is easy to show that the representation (20) is then a UR of Diff R^{N}, i.e.

$$
\sum_{\omega i j} \Psi_{i j}^{\prime * \omega}\left(x^{\prime}\right) \Psi_{i j}^{\prime \prime}\left(x^{\prime}\right)=\sum_{\omega i j} \Psi_{i j}^{* \omega}(x) \Psi_{i j}^{\omega}(x)
$$

and has the form (16) for transformations of the GL(N, R) group.
In order to find the infinitesimal operators for the representation (20), we consider the infinitesimal transformation of coordinates, $x_{\mu}^{\prime}=x_{\mu}+\epsilon f_{\mu}(x)(|\epsilon| \ll 1)$, of the Diff R^{N} group. Then the matrix elements $\Lambda_{\mu \nu}\left(x^{\prime}(x), x\right)$ have the form

$$
\begin{equation*}
\Lambda_{\mu \nu}(x+\epsilon f(x), x)=\delta_{\mu \nu}+\epsilon \partial f_{\mu} / \partial x_{\nu} . \tag{21}
\end{equation*}
$$

The infinitesimal generators $\operatorname{GL}(N, R)$ are the matrices $\tilde{F}_{\mu \nu}(\mu, \nu=1,2, \ldots, N)$, whose matrix elements are given by $\left(\hat{F}_{\mu \nu}\right)_{\alpha \beta}=-\mathrm{i} \delta_{\mu \alpha} \delta_{\nu \beta}$. Therefore

$$
\begin{equation*}
\Lambda(x+\epsilon f(x), x)=I+\mathrm{i} \epsilon\left(\partial f_{\mu} / \partial x_{\nu}\right) \tilde{F}_{\mu \nu} \tag{22}
\end{equation*}
$$

From equations (20) and (22) we obtain the UR for the Lie algebra of Diff R^{N} $(N>3)$ constructed in I (see I44a)):

$$
\begin{align*}
\Psi_{i j}^{\prime \omega}(x+\epsilon f(x)) & =T_{x+\epsilon f(x)} \Psi_{i j}^{\omega}(x)=\Psi_{i i}^{\omega}(x)+\mathrm{i} \epsilon\left(\partial f_{\mu} / \partial x_{\nu}\right)\left(\bar{F}_{\mu \nu}\right)_{\omega i i, \omega^{\prime} i^{\prime} j^{\prime}} \Psi_{i^{\prime} j^{\prime}}^{\omega^{\prime}}(x) \\
= & \left(I+\epsilon \bar{T}_{f}\right)_{\omega i j, \omega^{\prime} i^{\prime} j^{\prime}} \Psi^{\omega i^{\prime} j^{\prime}}(x) . \tag{23}
\end{align*}
$$

2.3. The unitary representations of Diff R^{2} and Diff R^{3}

We proceed by analogy with the construction of the UR of Diff $R^{N}(N>3)$ and try to define the UR of Diff R^{2} and Diff R^{3} in the space of all series of the UR of $\operatorname{SL}(2, R)$ and $\operatorname{SL}(3, R)$ respectively. It is convenient to extend the UR of $\operatorname{SL}(2, R)$ and $\operatorname{SL}(3, R)$ which are described in I to a UR of GL($2, R$) and $G L(3, R)$ respectively. From (I17), (I19) and (I21), (I26) we find the realisation of UR of $\operatorname{GL}(2, R)$ and $\operatorname{GL}(3, R)$ in the following form. For three series of the UR of GL($2, R$)

$$
\begin{align*}
\Psi_{m}^{\prime}(g x)= & (T(g))_{m n} \Psi_{n}(x) \\
& =\int \mathrm{d} k f_{m}^{*}(k)\left(a_{11}\left(k, g^{-1}\right)\right)^{(\mathrm{i} d-s+1) / 2}\left(a_{22}\left(k, g^{-1}\right)\right)^{(\mathrm{i} d+s-1) / 2} f_{n}\left(k_{g^{-1}}\right) \Psi_{n}(x) \tag{24}
\end{align*}
$$

with
$g^{-1} k=k_{g^{-1}} a\left(k, g^{-1}\right) t, \quad k, k_{g^{-1}} \in \operatorname{SO}(2), \quad g \in \mathrm{GL}(2, R), \quad \operatorname{det} g>0$.
For three series of the UR of $\operatorname{GL}(3, R)$

$$
\begin{align*}
\Psi_{l n m}^{\prime}(g x)= & (T(g))_{l n m, l^{\prime} n^{\prime} m^{\prime}} \Psi_{l^{\prime} n^{\prime} m^{\prime}}(x) \\
= & \int \mathrm{d} k \tau_{n m}^{* l}(k)\left(a_{11}(k, g)\right)^{(2 \mu-\lambda+i d) / 3}\left(a_{22}(k, g)\right)^{(i d-\mu+2 \lambda) / 3} \\
& \times\left(a_{33}(k, g)\right)^{(-\mu-\lambda+i d) / 3}\left[(2 l+1)\left(2 l^{\prime}+1\right)\right]^{1 / 2} \tau_{n^{\prime} m^{\prime}}^{l^{\prime}}\left(k_{g}\right) \Psi_{n^{\prime} m^{\prime}}^{l^{\prime}}(x), \tag{25}
\end{align*}
$$

with

$$
\begin{aligned}
& k g=t a(k, g) k_{g}, \quad g \in \mathrm{GL}(3, R), \quad \operatorname{det} g>0, \\
& k, k_{8} \in \mathrm{SO}(3), \quad a(k, g) \in A, \quad t \in T .
\end{aligned}
$$

Replacing the matrix elements $g_{\mu \nu}(\mu, \nu=1,2)$ by $\Lambda_{\mu \nu}\left(x^{\prime}(x), x\right)\left(x \in R^{2}\right)$ in the infinite matrix $\left\{(T(g))_{m n}\right\}(g \in \mathrm{GL}(2, R))$ we obtain the infinite matrix $\left\{\left(T_{x^{\prime}(x)}\right)_{m n}\right\}$ as follows:

$$
\begin{align*}
\left(T_{x^{\prime}(x)}\right)_{m n}=\int & \mathrm{d} k f_{m}^{*}(k)\left(a_{11}\left(k, \Lambda^{-1}\left(x^{\prime}(x), x\right)\right)\right)^{(\mathrm{id}-s+1) / 2} \\
& \times\left(a_{22}\left(k, \Lambda^{-1}\left(x^{\prime}(x), x\right)\right)\right)^{(\mathrm{id} d+s-1) / 2} f_{n}\left(k \cdot \Lambda^{-1}\left(x^{\prime}(x), x\right)\right) . \tag{26}
\end{align*}
$$

It is evident that

$$
\begin{equation*}
\Psi_{m}^{\prime}\left(x^{\prime}\right)=\left(T_{x^{\prime}(x)}\right)_{m n} \Psi_{n}(x) \tag{27}
\end{equation*}
$$

is a UR (with respect to the scalar product (I18), (I22)) of Diff R^{2}. The UR of Diff R^{3} is constructed in a similar way:

$$
\begin{align*}
& \Psi_{l n m}^{\prime}\left(x^{\prime}\right)=\int \mathrm{d} k \\
& k \tau_{n m}^{* l}(k)\left(a_{11}\left(k, \Lambda\left(x^{\prime}(x), x\right)\right)\right)^{(2 \mu-\lambda+\mathrm{i} d) / 3} \\
& \times\left(a_{22}\left(k, \Lambda\left(x^{\prime}(x), x\right)\right)\right)^{(i d-\mu+2 \lambda) / 3}\left(a_{33}\left(k, \Lambda\left(x^{\prime}(x), x\right)\right)\right)^{(-\mu-\lambda+1 d) / 3} \tag{28}\\
& \times\left[(2 l+1)\left(2 l^{\prime}+1\right)\right]^{1 / 2} \tau_{n^{\prime} m^{\prime}}^{l^{\prime}}\left(k . \Lambda\left(x^{\prime}(x), x\right)\right) \Psi_{n^{\prime} m^{\prime}(x)}^{l^{\prime}(x)}
\end{align*}
$$

with

$$
\begin{aligned}
& k \Lambda\left(x^{\prime}(x), x\right)=t a\left(k, \Lambda\left(x^{\prime}(x), x\right)\right) k . \Lambda\left(x^{\prime}(x), x\right), \\
& k, k \cdot \Lambda\left(x^{\prime}(x), x\right) \in \operatorname{SO}(3), \quad a\left(k, \Lambda\left(x^{\prime}(x), x\right)\right) \in A .
\end{aligned}
$$

It is evident that the representation (28) is unitary with respect to the scalar product (I20), (I22) if the parameters d, μ, λ have values given in I .

3. Summary

In this work we have constructed the unitary representations of the Diff R^{N} group in the space of such UR of $\operatorname{SL}(N, R)$ which have realisation in the space of functions on $\operatorname{SO}(N)$. We have used a method which is closely connected with the method of induced representations (Warner 1972) in the representation theory of semi-simple finite Lie groups; apart from the theoretical interest, it is an advantage in practical calculations.

Acknowledgment

The author would like to thank V I Ogievetsky for helpful discussions.

References

Borisov A B 1978 J. Phys. A: Math. Gen. 111057
Helgason S 1962 Differential Geometry and Symmetric Spaces (New York: Academic) ch 6 Singer I M and Sternberg S 1965 J. Analyse Math. 153
Vershik A. M, Gelfand I M and Graev M I 1975 Usp. Mat. Nauk. 30 (No. 6) 3
Warner G 1972 Harmonic Analysis on Semi-Simple Groups vol 1 (Berlin: Springer) ch 5

[^0]: \dagger More precisely the Diff R^{N} group is not a group in the present-day sense of the word (Singer and Sternberg 1965): it is a (Lie) pseudo-group which is defined in R^{N} by families of diffeomorphisms, closed under the operations of composition and inversion.

